
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2004; 46:37–57 (DOI: 10.1002/�d.674)

Parallel adaptive re�nement for unsteady �ow calculations on
3D unstructured grids

Jacob Waltz∗;†

Applied Physics Division, Los Alamos National Laboratory; Los Alamos, NM 87545; U.S.A.

SUMMARY

A parallel adaptive re�nement algorithm for three-dimensional unstructured grids is presented. The
algorithm is based on an hierarchical h-re�nement=dere�nement scheme for tetrahedral elements.
The algorithm has been fully parallelized for shared-memory platforms via a domain decomposition
of the mesh at the algebraic level. The e�ectiveness of the procedure is demonstrated with applica-
tions which involve unsteady compressible �uid �ow. A parallel speedup study of the algorithm also
is included. Published in 2004 by John Wiley & Sons, Ltd.

KEY WORDS: adaptive re�nement; unstructured grids; computational �uid dynamics; parallel computing

1. INTRODUCTION

1.1. Background and motivation

Adaptive re�nement for unstructured grids has enjoyed a long and successful history, not just
in Computational Fluid Dynamics (CFD) [1–4], but in Computational Physics and Engineering
as a whole. That unstructured grids can be re�ned and dere�ned with no changes to the
underlying solver is in fact one of their biggest advantages over structured grid approaches.
As both problem size and computational power have increased dramatically over the last

decade, signi�cant amounts of time and e�ort have been devoted to the parallelization of un-
structured CFD solvers. Parallelization of such codes for either distributed- or shared-memory
platforms is at this point rather straightforward conceptually, although the actual implementa-
tion may be somewhat involved.
In contrast, parallelization of adaptive unstructured CFD solvers suitable for 3D unsteady

problems is at a less mature stage. Numerous e�orts have been made over the last decade in
the development of parallel adaptive 3D codes with varying results [5–11]. In some cases,
the resultant algorithm is only partially parallelized. For example, the �ow solver and domain

∗Correspondence to: J. Waltz, Applied Physics Division, MST086, Los Alamos National Laboratory, P.O. Box 1663,
Los Alamos, NM 87545, U.S.A.

†E-mail: jwaltz@lanl.gov

Published online 14 July 2004
This article is a U.S. Government work and is Received 2 July 2003
in the public domain in the U.S.A. Revised 10 November 2003

38 J. WALTZ

decomposition may be parallel, but the actual mesh adaption is serial. In other cases, the
algorithm is fully parallel but has been demonstrated only for test problems, rather than
production–quality calculations, so that questions about the ultimate practicality of the al-
gorithm remain. While a small number of these e�orts have indeed been quite successful,
application of fully parallel adaptive CFD codes to large unsteady 3D problems has yet to
become commonplace.
The importance of parallel mesh adaption for this class of problems is best demonstrated

with a simple example. First, recall Amdahl’s law, which states that given N processors and
a code with parallel fraction p, the speedup S is given by

S=
[p
N
+ (1− p)

]−1
(1)

For most unsteady 3D calculations, numerical experience indicates that the adaption process
generally consumes ≈ 10% of the computational time. If one assumes that the adaption algo-
rithm is serial, and that the remaining 90% of the computational e�ort is perfectly parallel,
then the maximum possible speedup for the entire calculation is

lim
N→∞

S=10 (2)

Given that machines with O(103) processors are commonplace at modern high-performance
computing centres, a maximum parallel speedup of O(10) falls far short of optimal resource
usage. Clearly, improvements can be gained only if the mesh adaption also is parallelized.
Any discussion of parallel adaptive re�nement leads quite naturally into the discussion

of distributed- versus shared-memory parallelization. The main advantage of shared-memory
parallelization in the context of this work is that since parallelization is performed at the loop
level, the user is freed from the task of dynamic load-balancing. A drawback of the shared-
memory approach is that while the development and implementation process may initially
seem much easier, a simple loop-by-loop parallelization of an unstructured grid code generally
will lead to poor parallel performance due to memory contention. Speci�cally, if multiple
processors try to simultaneously update identical pieces of data, delays will occur as processors
wait for one another. In addition to the memory contention problem, some loops inevitably
involve operations which are inherently non-parallel, such as recursion. Any serial loops will
reduce the scalability of the overall adaptive solver.
With these observations in mind, a shared-memory parallelization strategy for unstructured

mesh adaption should seek to achieve two primary goals: �rst, memory contention must be
avoided as much as possible; and second, as many individual loops as possible must be par-
allelized, which in turn implies that inherently non-parallel algorithms must be rewritten with
alternative procedures. A high level of single-processor performance is of course desirable.
The purpose of this paper, therefore, is to present a parallel adaptive re�nement algorithm

which successfully realizes both goals and thereby achieves a relatively high level of parallel
e�ciency. The more general goal is a fully parallel adaptive simulation capability suitable
for large unsteady problems in 3D. No claim is made as to whether or not a shared-memory
unstructured grid method is the optimal approach for such problems. Rather, the method is
presented as simply one way to achieve the stated goal.
The adaption algorithm described herein has been implemented in a general purpose Finite

Element CFD code [12] which also is parallelized for shared-memory platforms. Although

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 39

the algorithm is speci�cally applicable to unstructured tetrahedral meshes and shared-memory
platforms, the challenges involved are, at a general level, applicable to structured grids and=or
distributed-memory platforms. As was indicated, signi�cant losses in parallel speedup will
occur if the entire adaptive �ow solver is not parallelized. Neither the mesh type nor the
machine architecture change this fact.
A related issue is that after mesh adaption occurs, a number of secondary tasks must be

performed before the �ow solver can resume computation of the solution. These include eval-
uation of derived data structures; mesh renumbering; computation of Finite Element matrices
and other geometrical parameters, etc. These secondary operations also should be parallelized
to maximize the scalability of the entire adaptive �ow solver. Since this discussion is re-
stricted to the adaption algorithm proper, su�ce it to say that the overall parallelization ap-
proach used here can be applied successfully to these secondary operations (see for example
Reference [13]).

1.2. Summary of paper

The remainder of this paper is organized as follows. Section 2 discusses issues which, while
not the primary focus of this work, are integral parts of the overall adaption algorithm. Specif-
ically, the topics of error indication, algebraic domain decomposition, solution interpolation,
allowable re�nement cases, and implementation are addressed. The �ow solver also is brie�y
described. Section 3 presents the adaption algorithm proper, beginning with an outline of the
various substeps followed by more detailed descriptions. Parallel performance of the adaption
algorithm for a typical unsteady compressible �ow calculation is discussed in Section 4. Nu-
merical examples, including a validation case, are presented in Section 5. Lastly, concluding
remarks are given in Section 6.

2. PRELIMINARY CONSIDERATIONS

2.1. Flow solver

As mentioned in the introduction, the adaption algorithm described in this paper has been
implemented in a general purpose CFD code [12] which also is fully parallelized for shared-
memory architectures. The solver utilizes an edge-based Finite Element formulation for linear
tetrahedra. The sample calculations presented in this paper, all of which involve unsteady
compressible �ow, utilized an exact Riemann solver to compute the numerical �uxes for the
ideal-gas Euler equations. The numerical scheme is extended to higher-order accuracy via
an edge-based form of the classic MUSCL procedure [14] combined with the Van Albada
limiter. Time integration is performed with a fourth-order explicit Runge–Kutta method.

2.2. Error indication

The �ow solver used in this work is based on linear tetrahedral elements. The interpolation
error for a given unknown will therefore be dominated by second-order derivatives of the
unknown or, in more general terms, the Hessian of the unknown. Along a single edge, this
quantity is approximated in terms of a �nite di�erence of �rst-order directional derivatives as

���= 1
2 |∇u� · h− ∇u� · h| (3)

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

40 J. WALTZ

where � and � represent nodal indices (so that the two together represent an edge in the
mesh), h is the vector which de�nes the edge, and u is the �eld variable used to indicate
error. The gradients are calculated with a simple lumped-mass Galerkin method.
The above quantity is normalized by the L∞ norm of the error distribution to yield the

�nal error indicator:

���=
|∇u� · h− ∇u� · h|

‖∇u� · h− ∇u� · h‖∞
(4)

This �nal error indicator is both dimensionless and bounded between zero and one. These two
properties facilitate the use of multiple indicator variables: for each edge, the error estimate
for each indicator variable is calculated, and the �nal error estimate assigned to the edge is
the maximum of the individual values for the edge in question.
An alternative normalization approach is that advocated by L�ohner [2], i.e. normalization

by an average �rst-order derivative. Numerical experience with both approaches indicates that
the gradient-normalization is superior to the L∞-normalization when �ow features of widely
varying strength are present. In other cases, however, the L∞-normalization has been found
to be somewhat more reliable.
Given the above edge-based estimate of the interpolation error, the adaption criterion takes

the form

���¿ �H → re�ne (5)

���6 �L → dere�ne (6)

For steady-state calculations, the critical values �H and �L are de�ned in terms of the mean
error value over all edges:

�H =4��; �L = 1
4 �� (7)

This adaption criterion, therefore, tends to equidistribute the error [15]. For unsteady calcula-
tions, which are the primary interest here, the critical values are �xed at

�H ≈ 0:15; �L ≈ 0:05 (8)

Although these values are somewhat ad hoc, experience indicates that they are in fact appli-
cable to a wide range of problems. Similar behavior has been observed by other authors [2].

2.3. Algebraic domain decomposition

The basis of the algebraic domain decomposition is a colouring of the elements. Consider a
mesh G=(V;E), with points V and elements E, and denote by Vij=Ei ∩Ej the subset of
points shared between elements Ei and Ej. A colouring group is de�ned as a subset G of G
for which

Vij= ∅ ∀Ei; Ej ∈ G (9)

Since no two members of G share a point, they also cannot share a face or an edge.
When the mesh is modi�ed, a new set of colouring groups are generated for the new

mesh. As a result of the implementation, a set of colouring groups for a modi�ed mesh will

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 41

contain only unre�ned elements, i.e. elements in the original mesh which have not re�ned
along with the children of elements which have re�ned. The re�nement cases used in this
work (discussed subsequently) have the property that when an element is re�ned, each child
element will share at least one point with all of its siblings. An important consequence of
this property is that no two elements within a colouring group can be siblings.
Simple colouring algorithms which yield ≈ 30–50 colours for a typical 3D unstructured

grid can be devised fairly easily. The colouring itself can be performed in parallel if the
elements are divided evenly among the processors and a separate set of colouring groups is
generated independently on each processor. Whether or not the subset of elements assigned to
a processor actually forms a topologically continuous submesh is irrelevant, and generally they
will not. Numerical experience indicates that with this parallelization approach the number of
colours typically increases by 10–15% with each doubling of the number of processors.
For certain substeps of the adaption procedure, all that is required for parallelization is a

division of elements (or, alternatively, edges, faces, points, etc.) among processors. In these
instances, the non-overlapping properties of the colouring groups are unnecessary and the
colouring groups simply form a convenient means of partitioning the mesh. Alternatively,
one can partition the mesh into equally sized portions (one per processor). In either case the
domain decomposition is still performed at an algebraic level, i.e. via array indices, with no ex-
plicit ‘handing o�’ of elements to processors. Again, the subset of elements assigned to a given
processor will not in general form a topologically continuous submesh, nor does it need to.

2.4. Solution interpolation

When a new grid point is introduced along an edge, the solution at the new grid point must be
interpolated from neighbouring points. The simplest and fastest way to interpolate the solution
is via the Finite Element basis functions. This amounts to a simple node-based average on an
edge, assuming that the new point is located at the centre of an edge. Other approaches also
have been examined, such as a strictly conservative interpolation and a higher-order monotone
approach similar to a MUSCL scheme. However, no di�erences in the results were observed.
Therefore the nodal average was implemented in the interest of computational e�ciency.

2.5. Re�nement cases

The allowable re�nement cases are the standard subdivisions of a tetrahedral element into
two, four, or eight child elements. These three basic cases are referred to as the 1:2, 1:4,
and 1:8 cases, respectively. Subdivision of 1:2 and 1:4 children is not allowed; instead, the
parent element is fully re�ned into eight children. These cases are referred to as the 2:8 and
4:8 cases. The intermediate 2:4 case has been omitted for simplicity. The re�nement cases,
and the number of possible variations for each case, are illustrated in Figure 1. Note that the
three basic cases can be classi�ed according to the number of edges which are re�ned: one
(1:2), three (1:4), or six (1:8). Re�nement is limited to a user-speci�ed maximum number
of levels. Recall that for the 1:8 re�nement case, three con�gurations are possible due to the
choice of the inner diagonal. Only one of these con�gurations (chosen arbitrarily) has been
implemented.
The inverses of the re�nement cases form the allowable dere�nement cases: 2:1, 4:1, 8:1,

8:2, and 8:4. For dere�nement the 4:2 case also is included. The parent element and its
children are collectively referred to as a dere�nement family, and the dere�nement cases can

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

42 J. WALTZ

Figure 1. Allowed re�nement cases.

Figure 2. Allowed dere�nement cases.

be classi�ed according to the number of points which are removed from the dere�nement
family. No restriction is made on the order in which dere�nements can occur, and elements
in the original mesh are not allowed to coarsen. The dere�nement cases are shown in Figure 2.

2.6. Adaption data structures

The fundamental adaption data structure is a ‘master’ list of elements. This list contains the
nodes of all elements, including re�ned elements. A separate list contains the ‘active’ elements.
The active list represents the current mesh at any stage in the simulation.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 43

For each master element, the following information is stored:

• active element number;
• re�nement case;
• number of children;
• child elements;
• re�nement level;
• child number;
• parent element.

For the active elements, an additional pointer-like array stores the corresponding master ele-
ment numbers.
The �ow solver (which includes the routines for the aforementioned secondary operations)

operates only on the active list of elements; the master list of elements and all other adaption
arrays are contained in a separate module which is accessible only by the adaption subroutines.
To reduce memory usage, no information for a re�ned element is retained other than that
contained in the adaption data structures.

3. ADAPTION ALGORITHM

3.1. Overview

An adaptive re�nement algorithm can roughly be broken down into the following substeps:

1. Compute error estimate at the edges.
2. Identify edges for re�nement.
3. Identify edges for dere�nement.
4. Add points and elements to the mesh.
5. Remove points and elements from the mesh.
6. Reinitialize solver.

Variations on the above are of course possible. The point of this breakdown, however, is to
illustrate that for maximum parallel e�ciency, each of the above tasks must be parallelized
such that the two desired requirements outlined in Section 1 are satis�ed.
Note that the �rst of the above substeps consists of a single loop over the edges and

is trivial to parallelize once the gradients of the indicator variable are known. Therefore,
no further discussion of this step is necessary. Additionally, the last substep consists of the
aforementioned secondary operations and is not treated here. The remaining substeps will be
addressed in the following subsections. A complete description of the algorithmic procedure
for each substep is not practical. Instead, the goal is to provide a general sense of the parallel
implementation with a moderate amount of low-level detail; the remainder can hopefully be
deduced from the text.

3.2. Re�nement compatibility

The identi�cation of edges which satisfy the re�nement criterion is on the surface a relatively
straightforward task: any edge which satis�es the re�nement criterion is simply �agged for
re�nement. However, due to the fact that the adaption criteria are applied at the edge-level,

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

44 J. WALTZ

while adaption decisions are ultimately applied at the element level, this initial marking of
edges will not in general yield a compatible re�nement pattern for all elements. For example,
an element may have four edges marked for re�nement, a situation which does not corre-
spond to any allowed re�nement case. Therefore, after the initial marking, additional edges
must be marked to ensure that any element with marked edges complies with one of the al-
lowed re�nement cases. Additionally, if an edge is marked for re�nement, all elements which
contain that edge will be a�ected. Therefore, the re�nement pattern for a given element also
must be compatible with the re�nement patterns of all neighbouring elements. The general
procedure used to ensure consistent re�nement patterns is referred to as compatibility, and a
parallel compatibility algorithm for re�nement is described in what follows. Compatibility for
dere�nement is discussed in a subsequent section.
The following terminology will be useful in what follows:

• Intermediate points: points which belong to the children of 1:2 and 1:4 re�nements, but
not to the parent element.

• Locked edges: edges which are not allowed to re�ne.
• Intermediate elements: elements which contain at least one intermediate point.
Initially, any edge which contains at least one intermediate point is �agged as a locked edge.

The requirement that the 1:2 and 1:4 cases re�ne only into 2:8 and 4:8 cases is therefore
equivalent to prohibiting re�nement of locked edges. This stipulation can be explained as
follows. As shown in Figure 1, when a 1:2 or 1:4 case is created, a subset of the edges of
the original parent element is re�ned. Subsequently, a 2:8 or 4:8 case requires that all edges
of the parent element which were not originally re�ned be re�ned, while all other edges in
the re�nement family be held �xed (some of these edges will be removed during the internal
reconnection process needed to create the new child elements). Inspection of the re�nement
cases indicates that this latter category of edges consists of edges in the re�nement family
which contain one or more intermediate points. Therefore, these edges are �agged as locked
edges and are not allowed to re�ne.
As the compatibility procedure progresses, additional edges which do not contain intermedi-

ate points will be �agged as locked edges. Elements which contain such edges will generally
be adjacent to elements which undergo a 2:8 or 4:8 re�nement.
Each element can be therefore be placed into one of three classes:

1. Normal elements without locked edges.
2. Normal elements with locked edges.
3. Intermediate elements with at least one edge marked for re�nement.

A separate compatibility algorithm must be applied to each of the above classes. The algorithm
for the �rst class is presented �rst. For a given element, denote by nrefine the number of
edges marked for re�nement. The phrase ‘activate an edge’ is taken to mean ‘mark the edge
for re�nement’ (and the opposite for the phrase ‘deactivate an edge’).

Algorithm I: Re�nement Compatibility, Class 1
(1) If nrefine = 1
(2) Accept as a 1:2 re�nement
(3) Else If nrefine = 2 OR nrefine = 3
(4) If active edges are on the same face

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 45

(5) Activate any inactive edges of the face
(6) Accept as a 1:4 re�nement
(7) Else If active edges are not on the same face
(8) Activate all edges
(9) Accept as a 1:8 re�nement
(10) End If
(11) Else If nrefine > 3
(12) Activate any inactive edges
(13) Accept as a 1:8 re�nement
(14) End If

The above algorithm takes a conservative approach which errs on the side of over-resolution
rather than under-resolution.
For the second class, normal elements with locked edges, the number of possible re�nement

cases is reduced. Any element with locked edges will have at least one edge for which
re�nement is prohibited. Therefore a 1:8 re�nement cannot occur for this class of elements
and the �nal value of nrefine cannot exceed three.

Algorithm II: Re�nement Compatibility, Class 2
(1) Deactivate all locked edges
(2) Count number of active edges
(3) If nrefine = 1
(4) Accept as a 1:2 re�nement
(5) Else If any face has nrefine >= 2 AND no locked edges
(6) Activate any inactive edges of the face
(7) Accept as a 1:4 re�nement
(8) Else
(9) Deactivate all edges
(10) Mark all edges as locked
(11) End If

Last is compatibility for intermediate elements. In this case, compatibility must be enforced
at the parent level: for a 2:8 or 4:8 re�nement to occur on a particular parent element, all
non-locked edges of all associated child elements must be re�ned. If, after activation of edges,
any child is found to contain an invalid pattern of marked edges, no re�nement is allowed
for any of the child elements. This situation can occur, for example, if an initially non-locked
edge of a particular child element is subsequently locked by an adjacent non-sibling element.

Algorithm III: Re�nement Compatibility, Class 3
(1) Identify parent element iparent
(2) Do for each child element ielement
(3) Activate all non-locked edges
(4) Deactivate all locked edges
(5) End Do
(6) Set compatible = TRUE
(7) Do for each child element ielement

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

46 J. WALTZ

(8) If ielement is not a valid re�nement case
(9) compatible = FALSE
(10) End If
(11) End Do
(12) If compatible = FALSE
(13) Do for each child element ielement
(14) Deactivate all edges of ielement
(15) Mark all edges of ielement as locked
(16) Mark ielement as normal
(17) End Do
(18) End If

These three basic algorithms de�ne the possible compatibility steps required for a single
element. To perform a compatibility pass for the entire mesh, the three algorithms must
be placed within a loop over all elements. Furthermore, the entire procedure is iterative:
compatibility passes must be repeated until no additional changes occur. The number of
compatibility passes is 5–15 in most cases, but occasionally increases beyond this amount.
This can occur, for example, when, in a certain region of the mesh, the distribution of ���

has a mean value close to �H. Once the compatibility process is complete, all elements with
marked edges can be assigned a re�nement case based on the pattern of marked edges.
Since each edge belongs to more than one element, a strong possibility for memory con-

tention exists if the compatibility process were parallelized as-is. Recall, however, that no
two elements within a colouring group share a point, and if two elements do not share a
point, they cannot share an edge. Therefore, elements within each colouring group can update
edge-based data in parallel. The parallel compatibility procedure therefore takes the form of
an outer serial loop over the colouring groups, and an inner parallel loop over the elements
within each colour. The inner loop contains the three basic compatibility algorithms.

3.3. Dere�nement compatibility

The dere�nement compatibility procedure is qualitatively similar to the re�nement compatibil-
ity procedure. The primary di�erence is that it operates on points rather than edges. Initially,
any edge which satis�es the dere�nement criterion is marked for dere�nement. An element is
then considered a candidate for dere�nement if and only if all of its edges are marked for dere-
�nement and all edges of its sibling elements are marked for dere�nement. Points which belong
to elements marked for dere�nement are themselves marked for dere�nement if and only if
they do not belong to the corresponding parent element. As with the re�nement compatibility,
the dere�nement compatibility also is conservative: as long as at least one edge of a given
dere�nement family fails to satisfy the dere�nement criterion, no dere�nement will occur.
When the parent element is originally re�ned, points are introduced on re�ned edges in a

speci�c manner so as to produce a valid re�nement case. This list of introduced points must
be reconstructed for each dere�nement family. Construction of the point list is dependent on
implementation, but in general terms involves examination of the nodes of the child elements
and therefore can be parallelized via the colouring approach.
Once the list of introduced points is reconstructed, dere�nement involves the removal of

some or all of these points in a manner consistent with the adaption cases. The compatibility

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 47

for a single parent element is as follows, where nderefine denotes the number of points
marked for removal (i.e. the number of active points) and icase denotes the re�nement case
of the original parent. Note that for 1:2 cases, nderefine cannot exceed 1, and for 1:4 cases,
nderefine cannot exceed 3.

Algorithm IV: Dere�nement compatibility
(1) If nderefine = 1
(2) If icase = 1:2
(3) Accept as a 2:1 dere�nement
(4) Else
(5) Deactivate all points
(6) End If
(7) Else If nderefine = 2
(8) If icase = 1:4
(9) Accept as a 4:2 dere�nement
(10) Else
(11) Deactivate all points
(12) End If
(13) Else If nderefine = 3
(14) If icase = 1:4
(15) Accept as a 4:1 dere�nement
(16) Else If icase = 1:8
(17) If inactive points lie on same face
(18) Accept as an 8:4 dere�nement
(19) Else
(20) Deactivate all points
(21) End If
(22) End If
(23) Else If nderefine = 4
(24) If inactive points lie on same face
(25) Deactivate third point of face
(26) Accept as an 8:4 dere�nement
(27) Else
(28) Deactivate all points
(29) End If
(30) Else If nderefine = 5
(31) Accept as an 8:2 dere�nement
(32) Else If nderefine = 6
(33) Accept as an 8:1 dere�nement
(34) End If

For the dere�nement compatibility, consistency with the allowed dere�nement cases must
be enforced both at the child level as well as between neighbouring parent elements. The
dere�nement compatibility is therefore parallelized the same way as the re�nement compati-
bility (recall that sibling elements cannot be in the same colouring group). To accelerate the
process, a given dere�nement family is evaluated for dere�nement compatibility only when

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

48 J. WALTZ

the �rst child of that family is accessed by the compatibility algorithm. As with the re�ne-
ment compatibility, the dere�nement compatibility also must be performed as an iterative
process.

3.4. Point addition

An integer help array edge flag(nedge) is used to mark edges for re�nement. A value of 1
indicates a re�ned edge, and a value of 0 indicates an unre�ned edge. The number of re�ned
edges is therefore obtained by summing the entries of the help array.
When an edge is re�ned, a new point is placed at the centre of the edge. Each new point

must be incorporated into the global point data structures, and therefore a global point number
must be assigned to each re�ned edge. A simple serial algorithm to count new points and
assign global numbers is the following, where npoint new denotes the number of new points.
Note that for each new point, the help array point flag(npoint) stores the edge.

Algorithm V: Point Numbers
(1) npoint new = 0
(2) Do for each edge iedge
(3) If edge flag(iedge) = 1
(4) npoint new = npoint new + 1
(5) edge flag(iedge) = npoint new
(6) point flag(npoint new) = iedge
(7) End If
(8) End Do

Given an array A of length N , and a second array B, with entries of 0 or 1 and also of length
N , the above algorithm essentially applies the semi-recursive mapping

A(i)=
∑
j=2;i

A(j)B(j) (10)

In the context of the Point Numbers algorithm, A would be the point number stored on each
re�ned edge and B would be the �ag which indicates whether or not an edge is re�ned.
Clearly the above relation is inherently non-parallel, and therefore an alternative approach is
needed.
The above procedure can be parallelized via a two-pass approach over processors. The edges

are divided up among the processors, and an auxiliary help array npoint proc(nproc+1)
(initialized to zero) is used to count the number of new points in each processor’s group of
edges. In the parallel version, npoint new is a local variable private to each parallel thread.

Algorithm VI: Parallel Point Numbers
(1) nedge base = nedge = nproc
(2) Parallel Do for each processor iproc
(3) npoint new = 0
(4) iedge1 = (iproc - 1) * nedge base + 1
(5) If iproc = nproc
(6) iedge2 = nedge
(7) Else

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 49

(8) iedge2 = iproc * nedge base
(9) End If
(10) Do for each edge iedge in iedge1:iedge2
(11) npoint new = npoint new + edge flag(iedge)
(12) End Do
(13) npoint proc(iproc+1) = npoint new
(14) End Parallel Do

(15) Do for each processor iproc
(16) npoint proc(iproc+1) = npoint proc(iproc+1) + npoint proc(iproc)
(17) End Do

(18) Parallel Do for each processor iproc
(19) npoint new = npoint proc(iproc)
(20) Compute iedge1, iedge2 as before
(21) Do for each edge iedge in iedge1:iedge2
(22) If edge flag(iedge) = 1
(23) npoint new = npoint new + 1
(24) edge flag(iedge) = npoint new
(25) point flag(npoint new) = iedge
(26) End If
(27) End Do
(28) End Parallel Do

Since this basic procedure is used extensively in what follows, a brief description is warranted.
The �rst parallel loop can be interpreted as counting the number of non-zero entries in the
array B for each subset of the array, i.e. the number of re�ned edges within each processor’s
list of edges is counted and stored with the processor in the array npoint proc. In the serial
loop, an o�set is created for each processor: the o�set consists of the total number of re�ned
edges in all previous processor’s lists of edges, i.e. mapping (10) is applied to the help
array npoint proc with B=1∀j. In the �nal parallel loop, mapping (10) is applied locally
within each processor’s list of edges, and the o�set for each processor is added in to give the
mapping a global context.
Note that although the second loop is serial, the loss in parallel e�ciency is minimal

due to the short length of the loop. Also note that the parallel version requires two passes
over the mesh, compared to just one for the serial version. Therefore, a certain amount of
overhead is incurred. Variations on this basic parallel counting procedure will be used in what
follows.
At the end of the counting procedure, the new global point number for a re�ned edge iedge

is edge flag(iedge) + npoint, and the edge number for new point ipoint is point flag
(ipoint) (the global point number for ipoint is simply ipoint + npoint).
Once the global point numbers are known, the global point data structures can be reallocated

to the proper sizes. In Fortran 90, this task is accomplished by �rst copying, in parallel, the
desired data to temporary storage. The arrays in question are destroyed, reallocated, and then
re�lled by coping, also in parallel, back from temporary storage. This approach is used in
what follows whenever an array needs to be resized.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

50 J. WALTZ

Recall that the array point flag stores the parent edge for each new point; the co-ordinates
and the interpolated unknowns at the new point are calculated from the values associated with
the nodes of the parent edge. Since the storage locations for the new points are already known,
the co-ordinates and unknowns can be computed and stored via a single parallel loop over
new points.
New points on the boundary of the mesh are incorporated in the exact same fashion. Bound-

ary conditions for new boundary points are determined by querying the boundary conditions
of the nodes of the parent edge.
The new point number associated with each re�ned edge will be needed in what follows.

For convenience, the new point numbers are converted to global point numbers, i.e. npoint
is added to each non-zero entry of the edge flag array.

3.5. Element addition
All elements marked for re�nement are transcribed into a separate list via a counting procedure
similar to that used to assign new point numbers. For each re�nement case, a look-up table
speci�es which local edges of the parent element are re�ned and de�nes the connectivity of
the child elements in terms of a local point list. The local point list for each re�ned element
can be constructed as follows, where my points(10) denotes the list of local points for an
element, element nodes denotes the nodes of an element, element edges denotes the edges
of an element, iedge denotes a local edge, and jedge denotes a global edge.

Algorithm VII: Point List
(1) Parallel Do for each re�ned element ielement
(2) my points(1:4) = element nodes(1:4,ielement)
(3) Look up icase and nrefine
(4) Do for each re�ned edge iedge
(5) jedge = element edges(iedge, ielement)
(6) ipoint = iedge + 4
(7) my points(ipoint) = edge flag(jedge)
(8) End Do
(9) End Parallel Do

For the 2:8 and 4:8 cases, the procedure must be slightly modi�ed as follows. First, the
local point list from the initial re�nement is reconstructed using look-up tables. Second, the
remaining entries in the local point list are obtained via the above procedure.
In the second step, global element numbers must be assigned to all newly created child

elements. This step also is performed via the parallel counting algorithm used previously. For
a given parent element, the element number for each new child is stored in the list of children
for the parent element. Once the total number of new elements is known, the master element
data structures are reallocated to the appropriate sizes. New elements are added to the master
list of elements via a single parallel loop over the list of re�ned elements which makes use
of the local point lists and look-up tables to de�ne the connectivity.

3.6. Point removal
Once points have been identi�ed for removal, elimination of these points from the data struc-
tures is fairly straightforward. The �rst step is to count the number of points which remain

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 51

in the mesh and to assign a new global point number to each remaining point. This step
can be accomplished with the same parallel counting algorithm (the points are divided up
among the processors). Next, the data structures are reallocated to their new smaller sizes. A
more e�cient approach would be to reallocate the data structures once, accounting for both
re�nement and dere�nement, but this has not been incorporated. Removal of boundary points
is accomplished in the same fashion.

3.7. Element removal

An element is marked for dere�nement if any of its points are marked for removal. All parent
elements which have children marked for removal are transcribed into a separate list with the
usual counting procedure. These parents are then processed, and the child elements removed
as needed. For the 2:1, 4:1, and 8:1 dere�nement cases, the child elements are simply marked
for removal from the master list of elements. In the other dere�nement cases, the connectivity
of child elements which remain must be rede�ned, and any excess children must be removed.
To facilitate the rede�nition of remaining child elements, the local point list for re�nement

of the parent can be reconstructed. The remaining child elements are subsequently rede�ned
with simple table look-ups. The entire rede�nition and �agging procedure contains no possi-
bility for memory contention and therefore can be performed with a single parallel pass over
the list of parent elements.
Once child elements have been �agged for removal and=or rede�ned, the master element list

and other adaption data structures are updated in a similar fashion to the point data structures.
The only added di�culty is that new child=parent numbers must be tracked and updated.

3.8. Active mesh update

The �nal step in an adaption pass is to generate the new list of active elements from the
master element list. The algorithm for this step is as follows, where nelement href is the
number of elements in the master list and nelement proc(nproc) is a help array. The array
master flag(nelement href) is initially 1 for active elements and 0 for inactive elements.
The master list of nodes is contained in the array master nodes.

Algorithm VIII: Active Mesh Update
(1) nelement base = nelement href = nproc
(2) Parallel Do for each processor iproc
(3) nelement new = 0
(4) ielement1 = (iproc - 1) * nelement base + 1
(5) If iproc = nproc
(6) ielement2 = nelement href
(7) Else
(8) ielement2 = iproc * nelement base
(9) End If
(10) Do for each element ielement in ielement1:ielement2
(11) nelement new = nelement new + master flag(ielement)
(12) End Do
(13) nelement proc(iproc+1) = nelement new

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

52 J. WALTZ

(14) End Parallel Do

(15) Do for each processor iproc
(16) nelement proc(iproc+1) = nelement proc(iproc+1) + nelement proc(iproc)
(17) End Do

(18) Parallel Do for each processor iproc
(19) nelement new = nelement proc(iproc)
(20) Compute ielement1, ielement2 as before
(21) Do for each element ielement in ielement1:ielement2
(22) If master flag(ielement) = 1
(23) nelement new = nelement new + 1
(24) element flag(nelement new) = ielement
(25) master flag(ielement) = nelement new
(26) element nodes(1:4,nelement new) = master nodes(1:4,ielement)
(27) End If
(28) End Do
(29) End Parallel Do

At the end of this procedure, for each active element ielement, the corresponding master
element number is element flag(ielement), and the �nal number of active elements is
nelement = nelement proc(nproc+1).
After the active element list is �nalized, the re�nement module passes control back to the

�ow solver. All secondary operations are performed at this point.

4. PARALLEL PERFORMANCE

An unsteady compressible �ow calculation was used to evaluate the parallel performance of the
adaption algorithm. The test problem consisted of a 3D shocktube with Sod initial conditions.
The initial mesh contained approximately 106 elements. The calculation was performed for 30
time steps, with mesh adaption on the �rst time step (based on the initial conditions) and every
�ve time steps thereafter; therefore, mesh adaption occurred a total of seven times. Two levels
of re�nement were allowed, and density was used as the error indicator variable. The mesh
size reached approximately 7×106 elements by the second adaption pass, and approximately
107 elements by the fourth adaption pass. The mesh size remained at approximately this level
for the remainder of the calculation. The calculation was repeated with up to 64 processors,
and for each case the total amount of CPU time spent in the mesh adaption module was
measured via the system pro�ler.
The results of this study are shown in Figure 3: the solid line indicates ideal parallel

speedup, and the dashed line indicates the measured parallel speedup. The initial super-linear
speedup for two processors is due to cache e�ects. Application of Amdahl’s Law to the data
(with the speedup for two processors limited to two) yields an average parallel fraction of
0:987. Note that this value has been achieved with a �xed problem of moderate size; a well-
known caveat of Amdahl’s Law is that for a given code, p generally increases with problem
size.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 53

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
 U

p

Number of Processors

Figure 3. Parallel speedup of adaption algorithm.

Figure 4. From top to bottom: adapted surface mesh at t=1:8 s; t=8:0 s; t=16:3 s; and t=20 s.

5. NUMERICAL EXAMPLES

5.1. Shocktube

The �rst numerical example is identical to that used to evaluate the parallel performance,
except that the initial mesh contained only 2×104 elements. The mesh size increased by ap-
proximately one order of magnitude. The results are shown in Figures 4 and 5: Figure 4
shows the adapted mesh at di�erent times during the calculation, and Figure 5 shows the
density and pressure along a centreline through the shocktube after an elapsed time of 20 s.
In the latter two plots, the data represent the solution at interpolation points evenly spaced
along the centreline, and not the solution at mesh points. The solid line indicates the exact
one-dimensional solution. The results shown were obtained using four processors. The calcu-
lation was repeated using between one and 32 processors, and in all cases the results were
numerically identical.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

54 J. WALTZ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100

D
en

si
ty

Centerline Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100

P
re

ss
ur

e

Centerline Distance

Figure 5. Computed density (left) and pressure (right) along centreline at t=20 s.

Figure 6. Adapted surface mesh and pressure contours after 100, 400, 700, and 1000 time steps.

5.2. Taylor–Sedov problem

The second numerical example consists of a three-dimensional Taylor–Sedov problem. The
blast was initialized as a hemi-spherical region with a radius of approximately 10 cm, with

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 55

Figure 7. Geometry de�nition for shopping complex and blast location.

Figure 8. Adapted mesh and pressure contours at di�erent times.

an initial pressure and energy in this region 1015 times higher than the ambient values. Two
levels of mesh re�nement were allowed, with pressure as the indicator variable. The initial
mesh contained approximately 105 tetrahedra. Figure 6 shows the adapted mesh on the bottom

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

56 J. WALTZ

surface and pressure contours on a vertical cut-plane through the blast origin at various times
during the calculation. The calculation was performed with two processors, and at the time
of the �nal image the mesh contained approximately 106 tetrahedra.

5.3. Urban blast

The �nal numerical example is a blast in an urban shopping complex. Figure 7 shows the
geometry and blast location (indicated by the area of high mesh-resolution in the approximate
centre of the image). Three levels of mesh re�nement were allowed, with pressure as the
indicator variable. The initial mesh contained approximately 7×105 tetrahedra and 24 proces-
sors were used. Figure 8 shows the adapted surface mesh and pressure contours at di�erent
times during the calculation. The pressure contours are shown on the surface and on a ver-
tical cut-plane through the blast origin. At the time of the �nal image the mesh contained
approximately 2×107 tetrahedra.
The calculation was repeated on the same number of processors, but with the mesh adaption

operating serially and the remainder of the calculation operating in parallel. Comparison of
the two calculations (based on system pro�ler measurements) indicates a parallel speedup
of approximately 20 in the mesh adaption for this problem. This speedup corresponds to a
parallel fraction of 0:991, which is slightly higher than that measured in the speedup study of
Section 4. The slightly higher parallel fraction is most likely due to the larger problem size.

6. CONCLUSIONS

A parallel adaptive re�nement algorithm for three-dimensional unstructured grids has been
described. The algorithm is based on hierarchical h-re�nement=dere�nement for tetrahedral
elements, and is parallelized via a domain decomposition of the mesh at the algebraic level.
The algorithm has been implemented in a general purpose Computational Fluid Dynamics
code, and the e�ectiveness of the overall parallel adaptive �ow solver has been demonstrated.
Scaling studies indicate that a parallel fraction on the order of 0:99 is achieved for the mesh
adaption procedure.
A reexamination of the hypothetical calculation discussed in Section 1 is appropriate as

a closing point. Recall that in this calculation, a perfectly parallel �ow solver was assumed
to consume 90% of the computational time, and mesh adaption was assumed to consume
10% of the computational time. In the case of a purely serial mesh adaption procedure, the
maximum possible speedup was limited to 10. However, given a parallel fraction of 0:99 for
the mesh adaption, the maximum possible speedup increases to 1000. Although this example
is somewhat contrived, it nonetheless illustrates the impact of parallel mesh adaption on the
overall parallel e�ciency of an adaptive unstructured �ow solver. More generally, it reinforces
the notion that if truly scalable performance is desired from a code, all aspects of the code
must be parallelized.

ACKNOWLEDGEMENTS

This work was completed while the author held a National Research Council Postdoctoral Research
Associateship at the Naval Research Laboratory, Washington, DC. The shopping complex geometry
was provided by Dr. F. Camelli of George Mason University, Fairfax, VA.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

PARALLEL 3D ADAPTIVE REFINEMENT 57

REFERENCES

1. Mavriplis DJ. Accurate multigrid solution of the Euler equations on unstructured and adaptive meshes. AIAA
Journal 1990; 28:213–221.

2. L�ohner R, Baum J. Adaptive h-re�nement on 3-D unstructured grids for transient problems. International Journal
for Numerical Methods and Fluids 1992; 14:1407–1419.

3. Kallinderis Y, Vijayan P. Adaptive re�nement-coarsening scheme for three-dimensional unstructured meshes.
AIAA Journal 1993; 31:1440.

4. Peraire J, Piero J, Morgan K. Adaptive remeshing for three-dimensional compressible �ow calculations. Journal
of Computational Physics 1992; 103:269–285.

5. Minyard T, Kallinderis Y. A parallel Navier–Stokes method and grid adapter with hybrid prismatic=tetrahedral
grids. AIAA Technical Paper 1995–0222, 1995.

6. Shephard MS, Flaherty JE, de Cougny HL, Ozturan C, Bottasso CL, Beall MW. Parallel automated adaptive
procedures for unstructured meshes. Parallel Computing in CFD, AGARD-R-807, 1995.

7. Shostko A, L�ohner R. Parallel 3-D H-re�nement. AIAA Technical Paper 1995–1662, 1995.
8. Oliker L, Biswas R, Gabow HN. Parallel tetrahedral mesh adaption with dynamic load balancing. Parallel
Computing 2000; 26:1583–1608.

9. Leyland P, Richter R. Completely parallel compressible �ow simulation using adaptive unstructured meshes.
Computer Methods in Applied Mechanics and Engineering 2000; 184:467–483.

10. Aftosmis M, Berger MJ, Adomavicius G. A parallel multilevel method for adaptively re�ned Cartesian grids
with embedded boundaries. AIAA Technical Paper 2000–0808, 2000.

11. Zhang SJ, Wang TS, Liu J, Chen YS, Godavarty D, Mallapragada P. A parallelized, adaptive, multi-grid hybrid
unstructured solver for all-speed �ows. AIAA Technical Paper 2002–0109, 2002.

12. Waltz J. Parallel adaptive unstructured �nite element schemes for 3D compressible and incompressible �ows.
AIAA Technical Paper 2002–2978, 2002.

13. Waltz J. Derived data structure algorithms for unstructured �nite element meshes. International Journal for
Numerical Methods and Engineering 2002; 54:945–963.

14. Hirsch C. Numerical Computation of Internal and External Flows, vols. 1 and 2. Wiley: New York, 1988.
15. Aftosmis MJ, Berger MJ. Multilevel error estimation and adaptive h-re�nement for Cartesian meshes with

embedded boundaries. AIAA Technical Paper 2002–0863, 2002.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:37–57

